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Abstract

I build a new model to study the impact of technological change on the

labour market, based on a simple claim – that new technologies will be able

to perform more types of tasks in the future. I call this ‘task encroachment’.

To explore this process, I use a new distinction between two types of capital –

‘complementing’ capital (‘c-capital’) and ‘substituting’ capital (‘s-capital’).

As the quantity and productivity of s-capital increases, it erodes the set of

tasks in which labour is complemented by c-capital. In a static version of

the model, this process drives down relative wages and the labour share of

income. In a dynamic model, as s-capital is accumulated, labour is driven

out the economy and absolute wages decline to zero. I show that c-capital

has an important role as a countervailing force against this immiseration of

labour.

JEL: J20, J21, J23

Keywords: Technological change; Wages; Unemployment.

Traditionally the economic literature that explored the consequences of technolog-

ical change on the labour market tended to support an optimistic view about the

threat of automation, though the reasons for that optimism changed over time. In

the early literature, the dominant framework was the “canonical” or “textbook”
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model (Acemoglu and Autor 2011; Atkinson 2008). Here, the labour of two dis-

tinct skill groups was typically combined in a constant elasticity of substitution

production function to produce output. In this model, by construction, it was

assumed that technology complements all types of worker. In this framework, it

is not possible for any workers to be made worse-off by technological change.1

In the more recent ‘task-based’ literature, the reason for any optimism was for

different. In these models, technology no longer directly complements all types

of workers, but instead only complements particular types of workers who are

able to perform tasks that cannot be automated. In turn, technology substitutes

for those workers who perform tasks that can be automated. Now it is possible

that certain workers are made worse-off by technological change (see, for instance,

Autor and Acemoglu 2011). In this framework, any optimism instead relies upon

the more nuanced claim that there exists a large set of types of tasks that cannot

be automated. In short, while the canonical model supported an optimistic view

about the threat of automation by making the strong assumption that technology

cannot substitute for labour, early task-based models tended to support an opti-

mistic view by making the weaker assumption that “the scope for ... substitution

is bounded” (Autor 2015).

The problem, however, is that the scope for substitution has proven not to

be bounded in the way that the early task-based literature expected. Though

accurately forecasting the capabilities of systems and machines is very difficult,

that initial literature tended to underestimate them. For instance, the majority of

tasks that were explicitly identified in Autor, Levy, and Murnane (2003) as being

out of reach of machines can increasingly now be automated.2 These papers tended

to rely on a particular understanding of how systems and machines operate and

1For instance, in a canonical model with low-skill labour LL and high-skill labour L, the
production function is CES:

Y =
[
(ALLL)

σ−1
σ + (AHLH)

σ−1
σ

] σ
σ−1

By construction ∂wL

∂AH
> 0, ∂wL

∂AL
> 0 – and similarly for wH .

2The paper noted that the “driving a truck” could not be readily automated, but a type of
driverless vehicle appeared two years later; and it argued that “legal writing” and “medical di-
agnosis” could not be readily automated, yet document automation systems are now widespread
in most major legal practices and there are a variety of technologies that can diagnose health
problems. Also consider that Autor and Dorn (2013a) noted that order-taking and table-waiting
could not be readily automated, but later that year the US restaurants Chili’s and Applebee’s
announced they were installing 100,000 tablets to allow customers to order and pay without a
human waiter;3 Autor (2015) noted that the task of identifying a species of bird based on a
fleeting glimpse could not be readily automated, but later that year an app was released to do
that as well.4.
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the limits to their capabilities that this implied – known as the ‘ALM hypothesis’.5

Under this hypothesis, these tasks were believed to be out of reach of automation

because they were ‘non-routine’ rather than ‘routine’. But in some very significant

cases this has proven not to be the case.

A new empirical literature has emerged that attempts to revise and update the

boundaries to system and machine capabilities. For instance: Caines et al. (2017)

argue that a task which is more ‘complex’ is harder to automate; Brynjolfsson and

Mitchell (2017) and Brynjolfsson, Mitchell, and Rock (2018) argue that, among

other factors, a task where the goal is easy to define, where it is straightforward

to see if the goal has been achieved, and where there is lots of data, is easier to

automate; and Frey and Osborne (2017) use machine learning techniques to iden-

tify a vector of possible signals that determine whether a task can be automated.

Yet the fundamental difficulty with trying to identify new limits at all is that, in

time, as with the ALM hypothesis, they are likely to change as well.

In this paper, I take an alternative approach. Rather than try and identify

new limits, I start instead from a simple claim – though we cannot know exactly

what systems and machines will be able to do in the future, we can be confident

that they will be able to perform more types of tasks than they can today. This

claim has also been made implicitly in the most recent literature (for instance in

Autor and Acemoglu 2011, or Acemoglu and Restrepo 2018, where there are no

explicit limits to the capabilities of machines). I call this, ‘task encroachment’.

And in what follows, I build a new model to explore the consequences of this

process for the labour market, where the set of types of tasks in which labour has

the comparative advantage over machines is gradually eroded away.

In this paper, I use the term ‘capital’ to refer to the wide variety of systems

and machines used in the economy. In what follows, I introduce a new distinction

between two types of capital – ‘substituting’ capital (‘s-capital’) and ‘comple-

menting’ capital (‘c-capital’). Here, c-capital is a q-complement to a distinct set

of types of tasks, and an increase in its quantity or productivity raises the value of

those complemented tasks. Under the early ALM hypothesis, these complemented

tasks were ‘non-routine’ tasks; under the various newer attempts to identify the

new boundaries to system and machine capabilities mentioned before, these tasks

have a range of alternative properties.6 However, in this paper, these comple-

5‘ALM’, after ‘Autor, Levy and Murnane’ – the authors of Autor, Levy, and Murnane (2003).
6The definition of ‘q-complementarity’ is more nuanced in a many-good setting, as in this

paper. This is because in the set-up in which q-complementarity was originally defined – Hicks
(1970), and Sato and Koizumi (1973) – the models had only a unique final good. When I use
the term ‘q- complement’ I mean that an increase in the allocation of a factor’s task input to
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mented tasks are not indefinitely performed by labour – they are performed either

by labour or by s-capital. This implies that labour benefits indirectly from tech-

nological change, only if it remains best-placed to perform those complemented

tasks. And in this model, an increase in the quantity or productivity of s-capital

erodes that comparative advantage of labour in performing these complemented

tasks. This is task encroachment at work.

This distinction between two different types of capital, and their different ef-

fects on labour, is new and matters for our understanding of the impact of new

technologies on labour.7 The model in this paper is closely related to a set of exist-

ing task-based models that also study these effects (for instance, Zeira 1998, Ace-

moglu and Autor 2011, Hémous and Olsen 2016, Acemoglu and Restrepo 2018a,

b). Yet because of the structure of production in these other models, and their

use of only one type of capital, these two different effects on labour are entangled.

The new model in this paper disentangles them in a revealing way. Each type of

capital has only one effect – it either substitutes for labour, or q-complements it –

and, as a result, it is possible to explore what happens if the set of tasks in which

labour is q-complemented by c-capital shrinks, holding constant the ‘intensity’ of

that q-complementarity.8

The new model in this paper, and the process of task encroachment that it

captures, supports a more pessimistic view about the threat of automation. As

s-capital becomes more productive, labour is forced to specialise in a shrinking

set of types of complemented tasks. In a static version of the model, an increase

in the quantity or productivity of s-capital drives down relative wages and the

labour share of income and forces labour to specialise in a shrinking set of tasks.

In a dynamic version, the endogenous accumulation of s-capital drives labour out

the economy at an endogenously determined rate, and absolute wages fall towards

zero. In the limit, labour is fully immiserated and ‘technological unemployment’

follows. As Autor and Salomons (2017a,b) put it, in their discussion of this new

model, labour has “no place left to hide”.

This paper is closely related to two recent papers, and the new distinction I

the production of a given good, ceteris paribus, causes the marginal product of the other task
input involved in the production of that good to increase.

7Beyond the task-based literature, there are papers that involve two capital stocks. For
instance, Steigum (2011) builds a growth model with two capital stocks, one of which is ‘robot’
capital, and more recent papers that have build on this approach: for instance, DeCanio (2016),
Antony and Klarl (2019), Lankisch et al. (2019) and Antony and Klarl (2020).

8A notable exception to this is Berg, Buffie, and Zanna (2018). In this paper, there are two
types of capital – ‘robot’ capital and ‘traditional’ capital. However, this model does not have a
continuum of tasks and so cannot explore the process of task encroachment.

4



introduce between the two types of capital brings their conclusions together in

a revealing way. The first is Acemoglu and Restrepo (2018a). In that paper,

a similar process of task encroachment is at work, but labour is protected from

immiseration by the endogenous creation of new tasks in which labour has the

comparative advantage over capital. The second is Caselli and Manning (2019).

In that paper, the authors show that in models where capital is perfectly elasti-

cally supplied and labour is the only fixed factor, then real wages must rise with

technological progress. The new model in this paper starts from a similar point to

Acemoglu and Restrepo (2018a) – but by changing one condition, that sufficient

new tasks are created in which labour has the comparative advantage, the results

change drastically, and the immiseration of labour follows.9 In turn, the new dis-

tinction I introduce between s-capital and c-capital reveals that in a setting like

this, where insufficient new tasks are created, c-capital takes on a central role in

determining the direction of real wages – for if only s-capital is accumulated, as

initially in this model, then labour is no longer the only fixed factor as in Caselli

and Manning (2019), and real wages will fall with technological progress.10

This paper therefore identifies c-capital as an important new countervailing

force against the immiseration of labour – particularly if insufficient new tasks are

created in which labour has the comparative advantage. In turn, this provides

additional theoretical support to the growing interest in policy interventions that

encourage the development of “the ‘right’ kind of AI” (Acemoglu and Restrepo

2019b) and to an increasingly common demand that technologists develop ma-

chines that “work to augment humans, not simply replace us” (Brynjolfsson 2018)

– or, in the language of this paper, to develop c-capital rather than s-capital.

1. A Static Model

In the new model that follows there are two sets of types of tasks. The first is a

set of tasks that are performed only by ‘complementing capital’ (‘c-capital’). This

type of capital cannot perform the same type of tasks as labour. The second is a set

of tasks that are either performed by labour or ‘substituting capital’ (‘s-capital’).

These tasks that are performed by either labour or s-capital are ordered in a line

9The model in this paper therefore could be thought of as a detailed account of a critical
possible case that is briefly mentioned in Acemoglu and Restrepo (2018a) – what they call the
‘horse equilibrium’, where insufficient new tasks are created for labour to do (and workers, like
horses in the past, are immiserated).

10As Caselli and Manning (2019) put it, in “the models of ... Susskind (2017), in which workers
are harmed by new technology, rely on assuming ... that labor is not the only fixed factor”.
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from left to right, going from ‘simple’ to ‘complex’, and the relative productivity

of labour with respect to s-capital increases as tasks become more ‘complex’. This

feature is similar to that in Acemoglu and Autor (2011).11 To produce any good

in the economy requires a combination of a task performed by c-capital and a task

performed by either labour or s-capital.

The purpose of this new model is to study the effect of technological progress

in the use of the different types of capital. In equilibrium there is a single cut-

off and all of the tasks to the left of the cut-off are performed by s-capital with

c-capital and all of the tasks to the right are performed by labour with c-capital.

When capital is ‘complementing’, with a fixed and distinct role from labour in

production, improvements in its capability have a neutral effect on labour – labour

allocation across the task-continuum does not change, and wages relative to the

return on capital remain the same. This is optimism at work. But when capital

is ‘substituting’, increasingly capable s-capital erodes the set of types of tasks in

which c-capital q-complements labour. The relative return to labour falls and

labour is forced to specialise in a shrinking set of types of tasks. This is the new

pessimism at work.

1.1. Consumers

There is a continuum of consumers j ∈ [0, 1] who are either high-skilled workers

or capitalists. If consumer j is a high-skilled worker he sells his labour lj for a

wage w ≥ 0. If he is a capitalist with s-capital kSj or c-capital kCj he rents them

to earn rS ≥ 0 and rC ≥ 0 respectively. There is a continuum of types of goods

x(i) where i ∈ [0, 1] and each consumer j has Cobb-Douglas preferences over those

goods:

(1) lnu(xj) =

∫ 1

0

θ(i) lnxj(i) di

Note that, given the Cobb-Douglas utility function, this economy can be captured

by a representative consumer who owns all the factors. For simplicity, I assume

that all goods have the same expenditure density:

ASSUMPTION 1: θ(i) = 1 ∀i.
11And in turn it shares features with Dornbusch, Fischer, and Samuelson (1977), from which

Acemoglu and Autor (2011) also draw. Dornbusch, Fischer, and Samuelson (1977) is a two-
country trade model where a continuum of goods are traded and the result is a Ricardian
pattern of specialisation.
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1.2. Production and Firms

Goods are produced by combining two different types of tasks, z1(i) and z2(i),

where again i ∈ [0, 1]. The first set of types of task, z1(i), are those that can

performed by labour and s-capital. The second set, z2(i), can only be performed

by c-capital. Perfectly competitive firms must hire factors to perform these tasks.

The total stock of available factors is equal to the sum of lj, k
S
j , kCj , owned by the

consumers – L, KS, and KC respectively. The ‘task-based production functions’

for the goods are:

(2) x(i) = z1(i)ψz2(i)1−ψ

where ψ ∈ (0, 1). The ‘factor-based production functions’ for the tasks are:

(3)
z1(i) = aS(i)KS(i) + aL(i)L(i)

z2(i) = aC(i)KC(i)

where L(i), KS(i), and KC(i) are the allocations of labour, s-capital, and c-capital

to each type of task, and aL(i), aS(i) and aC(i) are their respective productivities.

Again, these factor-based production functions for tasks reflect the fact that c-

capital performs its own distinct set of tasks, but s-capital and labour perform the

same tasks. The productivities of s-capital and labour combine to form a ‘relative

productivity schedule’ over the z1(i) task-continuum:

(4) A(i) =
aL(i)

aS(i)

A second important assumption follows:

ASSUMPTION 2: A(i) is continuous, A(0) is a positive constant, A′(i) > 0,

and A′′(i) = 0.

The assumption that A′(i) > 0 is a ‘comparative advantage’ assumption.12 It

reflects two principles. First, as i increases, the task that is performed by labour

or s-capital, z1(i), becomes more ‘complex’. And secondly, that labour has an

increasing comparative advantage over s-capital at performing more complex tasks.

This is the sense in which labour is ‘high’ skilled. This reflects the fact that the

most complex tasks draw on creative, problem-solving, and interpersonal faculties

12Acemoglu and Autor (2011) also use this approach.
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of human beings that, as yet, are hardest to automate.13

1.3. Equilibrium

The Supply-Side

The firms must decide which factors to hire to perform the tasks that will produce

each type of good. It is clear that to perform the tasks z2(i) the firms will rent

c-capital – it is the only factor capable of performing those types of task. Less

obviously, the firms will hire either labour or s-capital to carry out the tasks z1(i)

– but never both together. This is Lemma 1:

LEMMA 1: In equilibrium, there exists some cut-off ĩ such that s-capital works

with c-capital to produce goods of type i ∈ [0, ĩ], and labour works with c-capital to

produce the goods of type i ∈ [̃i, 1].

The proof is intuitive.14 For any given w and rS in equilibrium, a perfectly com-

petitive firm will hire labour rather than s-capital to perform z1(i) if:

(5)

w

aL(i)
≤ rS

aS(i)

A(i) ≥ w

rS

which takes place to the right of ĩ, given the properties of A(i) in Assumption 1.

The opposite argument applies for the choice of s-capital over labour. At ĩ, the

cost of performing a unit of z1(̃i) to produce that good ĩ is the same for labour and

s-capital. This is shown in Figure 1. For any w
rS
∈ [a, b] there is a single ‘cut-off’

type of good ĩ. Given that factor-price ratio, firms would want to hire s-capital

(to work with c-capital) to produce all goods to the left of ĩ and hire labour (to

work with c-capital) to produce all goods to the right of ĩ. This is also intuitive.

A(i) is a factor demand schedule, its shape determined by Assumption 1, and it

describes the factor-price ratio for each type of good i that would make a firm

indifferent between using either labour or s-capital for a given z1(i). Moving left

to right along the task-continuum, if a firm is to remain indifferent, the relative

price of labour must rise. This is because the relative advantage of labour over

s-capital at performing z1(i) increases.

13Following Susskind (2019), the most complex tasks are relatively hard to routinise.
14Lemma 1 and the proof are similar to Lemma 1 in Acemoglu and Autor (2011).
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Figure 1: The Relative Productivity Schedule

Given this reasoning and Lemma 1, (2) and (3) combine to form the following

factor-based production functions for goods:

(6)

x(i) =
[
aS(i)KS(i)

]ψ [
aC(i)KC(i)

]1−ψ ∀i ∈ [0, ĩ]

x(i) =
[
aL(i)L(i))

]ψ [
aC(i)KC(i)

]1−ψ ∀i ∈ [̃i, 1]

The Demand-Side

Call γ(̃i) the share of total consumer expenditure on all goods that are produced

by s-capital and c-capital i.e. type i ∈ [0, ĩ]. Assumption 1 implies that:

(7)

γ(̃i) =

∫ ĩ

0

θ(i) di

= ĩ

In turn, it follows from (2) that the share of total consumer expenditure that is

spent on all the tasks performed by s-capital is equal to ψ · ĩ.15 The same argument

applies to the share of total consumer expenditure on tasks performed by labour

and c-capital, equal to ψ · (1− ĩ) and (1− ψ).

Equilibrium Factor Prices and Specialisation

15This is because the task-based production function for goods is Cobb-Douglas. To see this
formally, call the implicit ‘price’ of z1(i), pz1(i). Perfectly competitive firms will set this ‘price’
equal to the marginal revenue product of z1(i) in producing x(i), which is p(i)·ψz1(i)ψ−1z2(i)1−ψ.

As a result the z1(i) share of the expenditure on a particular x(i) is p(i)·ψ·z1(i)ψ−1z2(i)
1−ψ·z1(i)

p(i)·x(i) = ψ.
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As firms are perfectly competitive, the zero-profit condition requires that the total

consumer expenditure on the tasks that are performed by each factor is equal to

the income that the factor receives in return for carrying out those tasks. As a

result, given (7), the following conditions must hold:

(8)

rSKS = ψ · ĩ · Y

wL = ψ · (1− ĩ) · Y

rCKC = (1− ψ) · Y

where Y = rSKS + wL+ rCKC . The first two expressions in (8) imply:

(9)

w

rS
=

1− ĩ
ĩ
· K

S

L

= B(̃i)

B(i) generates a market equilibrium schedule. This is shown in Figure 2.

Figure 2: The Zero-Profit Schedule

From inspection, it is clear that for any w
rS

there is a unique cut-off good of type

ĩ that ensures market equilibrium holds. (9) and Assumption 1 imply: B′(i) < 0;

B′′(i) > 0; lim
i→0

B(i) =∞; and B(1) = 0.

The A(i) schedule describes the pattern of specialisation ĩ for each factor-price

ratio w
rS

. This is a factor-demand schedule. B(i) describes the factor-price ratio w
rS

that ensures market equilibrium for each pattern of specialisation ĩ. This is a zero

profit schedule. To derive the equilibrium cut-off ī, rather than a hypothetical cut-
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off ĩ, these two schedules are combined. This is shown in Figure 3 and Proposition

1 follows.

PROPOSITION 1: Given the properties of A(i) and B(i), there is a unique

equilibrium factor-price ratio, f , and a unique equilibrium cut-off type of good, ī.

Uniqueness can be seen from an inspection of Figure 3. Given the properties of

the A(i) and B(i) schedules in Assumption 2, the A(i) schedule must start below

the B(i) schedule and the schedules must cross only once.

Figure 3: Market Equilibrium

In equilibrium there is a clear pattern of specialisation. It is ‘Ricardian’.16 s-capital

specialises in producing the types of goods i ∈ [0, ī] with c-capital, and labour

specialises in producing the goods i ∈ [̄i, 1] with c-capital – i.e. the hypothetical

cut-off ĩ is replaced by the actual cut-off ī in (6). The full set of relative factor

prices follow from (8) and (9) – again, recognising that in equilibrium the actual

cut-off ī replaces the hypothetical cut-off ĩ:

(10)

w

rS
=

1− ī
ī
· K

S

L

w

rC
=
ψ · (1− ī)

1− ψ
· K

C

L

rS

rC
=

ψ · ī
1− ψ

· K
C

KS

16Equilibrium here is similar to Dornbusch, Fischer, and Samuelson (1977), though theirs is
an equilibrium in international trade.
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1.4. Comparative Statics

This model can be used to compare the effect of technological progress in the use

of the two different types of capital. First consider c-capital, and a rise in aC(i)

across the task-continuum. This has no effect on the wage relative to either the

return on s-capital, w
rS

, or c-capital, w
rC

, nor on the pattern of labour speciali-

sation, ī. This follows from the definition of the A(i) and B(i) schedules and

(10). Figure 3 remains unchanged. This is because c-capital is a q-complement

to both labour and s-capital in the production of all types of goods and, because

the task-based production functions for goods in (2) are Cobb-Douglas, this im-

plies a rise in the marginal productivity of c-capital in producing a given good

causes an equiproportionate rise in the marginal productivity of either the labour

or s-capital producing that good.17 This is the traditional channel of optimism in

the task-based literature – there exists a large set of types of tasks out of reach of

automation, in which labour is complemented by capital.

However, s-capital does have an effect on both relative wages. A uniform rise

in the relative productivity of s-capital is shown in Figure 4. The result is a fall

in w
rS

and w
rC

and a rise in ī – labour is forced to specialise in a shrinking set of

types of tasks, and is relatively worse off.18 This is because s-capital is a perfect

substitute for labour in performing those tasks that are q-complemented by c-

capital. labour’s comparative advantage diminishes, and is forced to specialise in

a shrinking set of q-complemented tasks. This is the new pessimism at work.

Figure 4: A New Market Equilibrium

17Note again in this many-good setting the traditional definition of ‘q-complementarity’ does
not apply straightforwardly. This is because in those settings there is only a unique final good.

18Exploring absolute, rather than relative, prices is more complex are requires the simulations
that follow in the dynamic setting.
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2. A Dynamic Model

In the static model, as s-capital becomes more productive, consumers do not

respond to any changes in the rate of return to capital. Now I place that new

model in a dynamic setting and introduce an endogenous process of s-capital

accumulation. The outcome is remorselessly pessimistic – labour is displaced at

an endogenously determined rate, is forced into specialising in a shrinking set of

tasks, and absolute wages are driven to zero. No steady-state is possible until

labour has been entirely driven out the economy by s-capital i.e. the economy

must approach a steady-state where ī(t) = 1. labour is fully immiserated, and

technological unemployment follows.

To solve this dynamic model, I nest the static analysis in the previous section

in a traditional Ramsey growth model framework. In any given t, the factor

prices and pattern of specialisation are determined instantaneously by that static

analysis – the A(·) and B(·) schedules in (5) and (9) are now time dependent

such that A(i, t) depends upon aS(i, t) and aL(i, t), and B(i, t) on ī(t), KS(t),

and KC(t). A further important feature of this model is the innovative use of a

numeraire price normalisation using a numeraire good. The price of this numeraire

good is set to one, and the prices of all other goods are relative to this good. This

numeraire price normalisation makes the dynamic model far more tractable, in two

ways. First it allows me to reduce the dimensionality of the many-good model.

As I will show, with Cobb-Douglas preferences across the range of goods, the law

of motion for the numeraire good is the same as the law of motion for aggregate

consumption across all goods – and so deriving the law of motion for the numeraire

good allows me to focus on aggregate consumption alone, rather than track the

full set of laws of motion for each good. Secondly, with Cobb-Douglas production

across the range of goods, the numeraire good allows me to derive analytically

tractable expressions for the absolute factor prices, rC and rS. These were not

required in the static analysis in the previous section – static equilibrium could be

characterised by the relative factor prices alone, as in (10). However, identifying

the dynamic equilibrium requires the absolute factor prices as well.19

19It is also possible to use a simplex price normalisation to solve the dynamic model, where∫ 1

0
p(i)di = 1. However, this approach can only be solved computationally and is far less tractable

than the numeraire price normalisation that I use.
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2.1. Consumers

Consumers have the same preferences as before. Again, the economy can be

captured by a representative consumer. Only s-capital KS(t) is accumulated, and

the consumer faces the dynamic maximisation problem:

(11)

max
x(t)

∫ ∞
0

e−ρt
∫ 1

0

lnx(i, t) di dt

s.t.

K̇S(t) = rS(t) ·KS(t) + rC(t) ·KC + w(t) · L− c(t)

KS(0) = KS
0

KS(t) ≥ 0

I assume there is exogenous growth in the productivity of s-capital, but no growth

in the productivity of c-capital. Any growth process must satisfy the following:

ASSUMPTION 3: For any exogenous growth process used, it must be the case

that aS (̃̃i, t) ≤ aS (̃i, t) · a
L (̃̃i,t)

aL (̃i,t)
for ˜̃i > ĩ ∀t.

This is the dynamic version of Assumption 2. It ensures that, as technological

progress takes place, s-capital does not become so productive in more complex

tasks (i.e. those with a higher i) as to overturn the general principle that labour has

the comparative advantage in these more complex tasks i.e. that A1(i, t) ≥ 0 ∀t.20

Initially, I assume that the particular growth process is:

(12)
ȧS(i, t)

aS(i, t)
= g ∀i, t

In the Appendix I show that this satisfies Assumption 3.

2.2. Production and Firms

Production is the same as in the static setting – the task-based production function

for goods, and the factor-based production functions for tasks, are as in (2) and

(3). For simplicity, I assume in the dynamic setting that there is no depreciation.

In closing this section, I explain why depreciation does not change the central

results.

20Where A1(i, t) is the derivative of A(i, t) with respect to i.
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The traditional approach to finding the steady-state in a Ramsey growth model

with technological progress like this is to re-define the variables in ‘effective’ terms,

dividing each variable by the prevailing level of labour-augmenting technology.

The result is that a steady-state is reached not in the actual variables, but in-

stead in these ‘effective’ variables, the variable ‘per efficiency unit of labour’. In

exactly the same way, solving this model requires that the s-capital augmenting

technological progress I am considering is instead exactly reflected in a process of

c-capital-augmenting technological progress. Consider again a good x(̃i, t) that is

produced by s-capital and c-capital. The transformation of the production func-

tion is as follows:

(13)

x(̃i, t) =
[
aS (̃i, t) ·KS (̃i, t)

]ψ [
aC (̃i, t) ·KC (̃i, t)

]1−ψ
=
[
KS (̃i, t)

]ψ [
aS (̃i, t)

ψ
1−ψ · aC (̃i, t) ·KC (̃i, t)

]1−ψ

(13) implies that a c-capital augmenting process of technological change in aS (̃i, t)
ψ

1−ψ

is identical to the s-capital augmenting process of technological change in aS (̃i, t) in

Assumption 3. This transformation has an important role in solving the dynamic

model.

2.3. Dynamic Equilibrium

From the maximisation problem in (11) a current-value Hamiltonian follows:

(14)

H =

∫ 1

0

lnx(i, t) di

+ µ(t)

[
rC(t) ·KC + rS(t) ·KS(t) + w(t) · L−

∫ 1

0

x(i, t) · p(i, t) di
]

It is possible to solve this Hamiltonian – with one co-state variable µ(t) and a

continuum of control variables, x(i, t) where i ∈ [0, 1] – in the traditional way. I

confirm this in the Appendix. A set of first order conditions follow for each good

x(i, t):

(15)
Hx(i) =

1

x(i, t)
− µ(t) · p(i, t)

= 0
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And for KS(t), the state variable:

(16)
HKS = µ(t) · rS(t)

= ρ · µ(t)− µ̇(t)

Together, (15) and (16) imply that for good x(i, t):

(17)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
+ rS(t)− ρ

This is derived in the Appendix. In a traditional Ramsey growth model, there is

only a unique final output and so there is no need to consider how the price of the

good changes over time. But (17) shows that in this many-good setting the rate

of growth of demand for x(i, t) will depend upon how its price changes over time.

To maintain tractability, I now use a numeraire price normalisation. In particular,

I assume that:

ASSUMPTION 4: The numeraire good is x(0, t) and so p(0, t) = 1 ∀t. Factor

productivities and factor stocks are finite such that ī(t) 6= 0 ∀t.

The price of good 0 is set to 1, and the prices of all other goods are in terms of

that good. As I will show, this now makes the dynamic model far more tractable.

Given Assumption 4 it follows from (17) that for x(0, t):

(18)
ẋ(0, t)

x(0, t)
= rS(t)− ρ

Given Assumption 1 it follows that the law of motion for the numeraire good

x(0, t) is the same as the law of motion for total consumption c(t).21 And so:

(19)
ċ(t)

c(t)
= rS(t)− ρ

It follows that if x(̃i, t) reaches a steady-state then total consumption c(t) will also

21Where c(t) =
∫ 1

0
x(i, t) · p(i, t) di. To see this note that since p(0, t) = 1:

c(t) =
x(0, t) · p(0, t)

θ(0)
=
x(0, t)

θ(0)

and so ċ(t)
c(t) = ẋ(0,t)

x(0,t) since θ(0) is constant and equal to 1.
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be in steady-state. From now, I use the law of motion in (19) and focus on c(t).

The law of motion for KS(t) follows from (11):

(20) K̇S(t) = Y (t)− c(t)

At this point, the dynamic system is expressed in terms of c(t) and KS(t). In order

to find the steady-state in this model it is necessary to transform these variables

into ‘effective’ terms, as with a traditional Ramsey growth model. For any variable

v(t), I use the following transformations:

(21) v̂(t) =
v(t)

aS(0, t)
ψ

1−ψ

ˆ̂v(t) =
v(t)

ī(t) · aS(0, t)
ψ

1−ψ

These transformations are new and differ from those used in any traditional Ram-

sey growth model. The intuition for the form of these effective variable is revealed

once the dynamic equilibrium is derived. But from inspection it is clear that a

‘.̂..’ term is ‘effective’ with respect to a term that captures the productivity of

s-capital at time t (reflecting the transformation in (13)), whereas the ‘ ˆ̂...’ term is

‘effective’ with respect to a term that captures the productivity of s-capital and

the value of the cut-off at any given moment in time, ī(t). In the analysis that

follows I look for an equilibrium in (ĉ,
ˆ̂
KS) space i.e. in ‘effective’ consumption

and s-capital space.

First, consider ĉ(t). (19) and (21) imply a law of motion for ĉ(t):

(22)
˙̂c(t)

ĉ(t)
= rS(t)− ρ− ψ

1− ψ
· g

Secondly, consider
ˆ̂
KS(t). (20) and (21) imply a law of motion for

ˆ̂
KS(t):

(23)

˙̂
K̂S(t)

ˆ̂
KS(t)

=
Ŷ (t)− ĉ(t)
K̂S(t)

−
[
gī(t) +

ψ

1− ψ
· g
]

where gī(t) is the growth rate in ī(t). Both the laws of motion in (22) and (23) can

be expressed in terms of ĉ(t) and
ˆ̂
KS(t) alone. This is what is required to study
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dynamic equilibrium in ĉ(t),
ˆ̂
KS(t)) space. To re-write (22) in this way requires

an expression for rS(t) in terms of (
ˆ̂
KS(t); to re-write (23) in this way requires

an expression for Ŷ (t) and gī(t) in terms of
ˆ̂
KS(t). The expressions for rS(t) and

Ŷ (t) in terms of
ˆ̂
KS(t) are derived in the Appendix and shown to be equal to:

(24) rS(t) =
ˆ̂
KS(t)ψ−1 ·D

and:

(25) Ŷ (t) =
ˆ̂
KS(t)ψ · D

ψ

where D is a positive constant equal to
(
aC(0) ·KC

)1−ψ · ψ.22 The expression for

gī(t) in terms of
ˆ̂
KS(t) follows by definition:

(26) gī(t) =
∂ī(t)

∂
ˆ̂
KS(t)

·
˙̂
K̂S(t) · 1

ī(t)

Using the expression for rS(t) in (24), Ŷ (t) in (25), and gī(t) in (26), the laws of

motion in (22) and (23) can now be re-expressed in terms of ĉ(t) and
ˆ̂
KS(t) alone

as required. The law of motion for ĉ(t) follows from (22) and (24):

(27)
˙̂c(t)

ĉ(t)
=

ˆ̂
KS(t)ψ−1 ·D − ρ− ψ

1− ψ
· g

The law of motion for
ˆ̂
KS(t) in (23) is more complex to derive. The full derivation

22(25) implies that the level of rS(t) depends on the choice of the numeraire good, ĩ – if a
different ĩ is chosen, the level of aS (̃i, t) and aC (̃i, t) will differ from those in (25) where ĩ = 0.
However, this does not affect the important features of absolute factor prices in equilibrium.
In the case where there is a one-off change in the productivity of s-capital, so long as that
change is uniform – as in Dornbusch, Fischer, and Samuelson (1977) – (25) implies that, ceteris
paribus, rS(t) will always move in the same direction regardless of the choice of numeraire. In
the case where there is an increase in the growth rate of the productivity of s-capital, so long as
the growth rates remain the same across different tasks, ceteris paribus, (25) implies that rS(t)
will always increase at the same rate regardless of the choice of numeraire. To explore non-
uniform changes in productivity, or to make the level of rS(t) invariant to the normalisation,
it is necessary to use a simplex price normalisation. But this leads to an implicit, rather than
explicit and tractable, solution to the model. This need for uniformity is an interesting limitation
of Dornbusch, Fischer, and Samuelson (1977) that was not explored. Complications involving
price normalisations are discussed elsewhere in the literature – Dierker and Grodal (1999), for
example, on models of imperfect competition.
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is shown in the Appendix. Using (25) and (26), it can be written as:

(28)

˙̂
K̂S(t)

ˆ̂
KS(t)

=

ˆ̂
KS(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KS(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KS(t)

· ˆ̂
KS(t)

With a traditional Ramsey growth model, the standard approach to identifying

steady-state is to consider these schedules in (ĉ,
ˆ̂
KS) space by plotting their stable

arms. (27) implies that the
˙̂c(t)
ĉ(t)

= 0 schedule, the stable arm for ĉ(t), is:

(29)
ˆ̂
KS∗ =

[[
ρ+

ψ

1− ψ
· g
]
· 1

D

] 1
ψ−1

This expression has an identical form to the stable arm in a traditional Ramsey

growth model with a labour-augmenting growth process taking place at rate ψ
1−ψ ·g

– the stable arm for ĉ(t) is simply a vertical schedule at some fixed
ˆ̂
KS∗ that ensures

rS(t) = ρ+ ψ
1−ψ ·g and ĉ(t) is constant. (28) implies that the stable arm for

ˆ̂
KS(t),

the
˙̂
K̂S(t) = 0 schedule, is equal to:

(30) ĉ(t) =
ˆ̂
KS(t)ψ · D

ψ
− ī(t) · ψ

1− ψ
· g · ˆ̂

KS(t)

This is almost identical to the stable arm in a traditional Ramsey growth model,

except in one important respect – the presence of ī(t). The reason that ī(t)

appears in the
˙̂
K̂S(t) = 0 schedule in this model is critical. This is because in any

period t, s-capital is only used to produce ī(t) of the goods in the economy. The

remaining 1− ī(t) goods are produced by labour whose productivity is unaffected

by technological progress (reflected, as in Assumption 3, by improvements in the

productivity of s-capital). However as ī(t) rises, and more goods are produced

by s-capital rather than labour, the production of more goods in the economy

is affected by that technological progress. As ī(t) rises it is as if the ‘effective’

rate of technological progress – this is ī(t) · ψ
1−ψ · g in (30) – rises. Indeed, the

increase in ī(t) in this new model with many goods has the same consequence as

an increase in technological progress in a traditional Ramsey growth model with

a unique final good.23 Intuitively, in a traditional Ramsey growth model with a

23If the rate of technological progress were to increase a traditional Ramsey growth model,
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unique final good, the economy ‘feels the full force’ of the technological progress,

whereas in this many-good model only ī(t) of the economy does (i.e. the ī(t) of

the economy that is exposed to s-capital).

ī(t) also has an important role in determining rS(t) in (24). That expression

implies that rS(t) is decreasing in
ˆ̂
KS(t). Given the definition of

ˆ̂
KS(t) implied

by (21), this means that rS(t) is decreasing in KS(t) and increasing in aS(0, t)

– as in a traditional Ramsey growth model – but that it is also increasing in

ī(t). This is because while there are diminishing returns to the use of KS(t) in the

production of any given good, increasing the range of goods ī(t) that KS(t) is used

to produce ‘spreads out’ the stock of s-capital across the economy, and offsets those

diminishing returns. It is this new role for ī(t) that means the transformations in

(21) must be used to find the dynamic equilibrium.

Because of the ī(t) term in the stable arm for
ˆ̂
KS(t) in (30), dynamic equilib-

rium is not analytically tractable. It requires a non-linear simulation of the three

equation system:24

(31)

˙̂c(t)

ĉ(t)
=

ˆ̂
KS(t)ψ−1 ·D − ρ− ψ

1− ψ
· g

˙̂
K̂S(t)

ˆ̂
KS(t)

=

ˆ̂
KS(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KS(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KS(t)

· ˆ̂
KS(t)

ī(t) = f(KS(t), A(̄i(t), t), L)

The first two are the familiar differential equations for ĉ(t) and
ˆ̂
KS(t). The third

is a static equation that determines ī(t) in any given t. However, despite this

complexity, it is still possible to identify analytically the unique steady-state that

this model approaches and also to provide an intuitive conjecture for transition to

this steady-state, without performing the simulation. This is shown in Figure 5

and Proposition 2 follows.

the corresponding ‘effective’ capital schedule would fall, requiring a lower rate of effective con-
sumption to ensure that the effective capital stock is constant.

24ĉ(t) is a forward-looking state variable,
ˆ̂
KS(t) is a backward-looking state variable, and ī(t)

is a simultaneously endogenous non-state variable (i.e. it has no associated differential equation).
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Figure 5: Dynamic Equilibrium

PROPOSITION 2: When the static model with s-capital is placed in a dynamic

setting with endogenous s-capital accumulation, the economy approaches a unique

steady-state at ĉ∗,
ˆ̂
KS∗, where ī∗ = 1 – in this steady-state, labour is entirely driven

out by s-capital. During transition, w(t) is driven to zero. The capital share of

income rises steadily to 1.

Given the restrictive modelling assumptions, Proposition 2 is best thought of as a

possibility result – that it is possible, in a dynamic model with optimising agents

in a general equilibrium setting, for wages and the labour share of income to

decline to zero because increasingly capable s-capital displaces labour completely

in production. The reasoning for Proposition 2 is as follows.

First, consider the steady-state itself. This exists where the stable arms for ĉ(t)

and
ˆ̂
KS(t) intersect. The steady-state is unique and must take place when ī(t) = 1

i.e. when labour is entirely driven out of the economy by s-capital. To see why,

first note that the stable arm for ĉ(t) in (
ˆ̂
KS, ĉ) space is a vertical schedule at the

level of
ˆ̂
KS∗ in (29). Now consider the following proof by contradiction. Suppose

that the stable arm for
ˆ̂
KS(t) crosses the stable arm for ĉ(t) where ī(t) 6= 1. In

this potential steady-state the productivity of s-capital grows at a rate ψ
1−ψ · g.

If this is to be a steady-state, then ī(t) must remain constant. If ī(t) does not

remain constant, then the stable arm for
ˆ̂
KS(t) will shift. This is implied by (30).

The analysis of the static equilibrium in the previous section implies that ī(t)

will only stay constant if KS(t) decreases to offset this increase in productivity.

21



But if KS(t) decreases such that ī(t) remains constant then
ˆ̂
KS(t) will fall, given

its definition in (21), violating the condition that
ˆ̂
KS∗ is constant at the steady-

state, as required by (29). KS(t) must therefore rise to ensure that
ˆ̂
KS∗ remains

constant. However, this growth in the stock of s-capital increases ī(t) further.

From the definition of the stable arm for
ˆ̂
KS(t) in (30) this will drive down the

intersection point of the stable arms for ĉ(t) and
ˆ̂
KS(t). The steady-state value of

ĉ∗ will be driven down. Repeating this argument implies that if steady-state is to

exist in
ˆ̂
KS(t)–ĉ(t) space, it must take place when ī(t) = 1.25

Now consider the transition path to this steady-state, where ī(t) = 1. Figure

5 shows this path when the steady-state is approached from the left i.e.
ˆ̂
KS(0) <

ˆ̂
KS∗. The transition path drawn is based on three observations. The first is that

the stable arm for ĉ(t) is known, given in (29). The second is that as
ˆ̂
KS(t)

increases, ī(t) also increases – this is intuitive, but proven in the Appendix. This

gives the stable arm for
ˆ̂
KS(t) its hump-shape in Figure 5, given (30).26 The third

is that, supposing the economy reaches the steady-state where ī(t) = 1, the new

model must collapse to have the same general form as a traditional Ramsey growth

model in which there is labour and capital, and a labour-augmenting process of

technological change taking place at rate ψ
1−ψ · g – but rather than there being

labour and capital, there is instead only two types of capital, with an s-capital-

augmenting process of technological change taking place at rate g that is equivalent

to a c-capital-augmenting process of technological change taking place at rate
ψ

1−ψ · g. As a result, locally to the steady-state, the new model has the same

approximated saddle-path as this traditional Ramsey growth model. This is what

is shown in Figure 5. Note that, unlike the Ramsey model, this steady-state is

only reached in the limit.27

This transition path is intuitive – during transition effective s-capital,
ˆ̂
KS(t),

effective consumption, ĉ(t), and the cut-off ī(t) rise and approach the steady state.

In effect, the accumulation of s-capital drives up consumption but also drives out

labour. This process is driven by the fact that s-capital is accumulated not only

to offset the fact that it is becoming more productive, as in transition to steady-

state in a traditional Ramsey growth model, but also because s-capital is becoming

25Note that it is not possible for a steady-state where ī(t) = 0 – although ī(t) is constant, this
would imply there is no s-capital and so the steady-state condition in (29) is violated.

26In effect, the
˙̂
K̂S(t) = 0 schedule is bounded below by a hypothetical

˙̂
K̂S(t) = 0 schedule

where ī(t) is fixed at 1 and above by a hypothetical
˙̂
K̂S(t) = 0 schedule where ī(t) is fixed at 0.

27By ‘collapse’, I mean the static three-factor analysis is replaced by a two-factor analysis
where there is no labour, and s- and c-capital combine to produce all goods.
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more intensively used across the economy – ī(t) is rising, offsetting the diminishing

returns to s-capital in the production of any particular good. It is as if the economy

is chasing a steady-state that is continually slipping out of its grasp – until ī(t) = 1

and labour is fully driven out.

During transition, wages are driven to zero. To see this, first note from (24)

that as
ˆ̂
KS(t) rises during transition, rS(t) must fall. In turn, consider that the

relative wage of labour with respective to s-capital as steady-state is approached

is equal to:

(32)

lim
t→∞

w(t)

rS(t)
= lim

t→∞
A(̄i(t), t)

= lim
t→∞

aL(̄i(t), t)

aS (̄i(t), t)

and since lim
t→∞

ī(t) = 1 it follows that:

(33)
lim
t→∞

aL(̄i(t), t)

aS (̄i(t), t)
= lim

t→∞

aL(1, t)

aS(1, t)

= 0

given that aL(i, t) is constant over time ∀i, and there is continuous growth in

aS(i, t) ∀i, as in (12), so lim
t→∞

aS(1, t) =∞. This means that w(t)
rS(t)

is driven to zero.

And since rS(t) must fall during transition, this implies w(t) is driven to zero as

well. To ensure that the steady-state is well-defined, I assume that once wages are

equal to zero, labour chooses not to work at all rather than to work for nothing

at all.

Note that the particular transition path draw in Figure 5 is still a conjecture,

and for an important reason – the approximated saddle-path in Figure 5 is only

correct locally to the steady-state. It is based on the claim that ī(t) = 1 in steady-

state, but as soon as
ˆ̂
KS(t) deviates from

ˆ̂
KS∗ along the saddle-path, ī(t) 6= 1, and

this claim no longer holds. In order to find the actual saddle-path to this steady-

state, it is necessary to perform a non-linear simulation. I show an example in the

Appendix.

Proposition 2 is also derived without depreciation. This may seem like a signif-

icant omission, since the depreciation of the existing stock of s-capital may appear

to act as a counterbalance to the accumulation of s-capital and the displacement

of labour. But this intuition is incorrect. Suppose depreciation takes place at
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rate δ. As in a traditional Ramsey growth model, the introduction of depreciation

changes the stable arm for ĉ(t):

(34)
ˆ̂
KS∗ =

[[
ρ+ δ +

ψ

1− ψ
· g
]
· 1

D

] 1
ψ−1

and also the stable arm for
ˆ̂
KS(t),

˙̂
K̂S(t) = 0:

(35) ĉ(t) =
ˆ̂
KS(t)ψ ·D − ī(t) ·

[
δ +

ψ

1− ψ
· g
]
· ˆ̂
KS(t)

The implication of (34) and (35) is that while the introduction of depreciation will

change the level of steady-state
ˆ̂
KS∗ – implied by (34) – it is still the case that the

model must approach a steady-state in (ĉ,
ˆ̂
KS) space when ī(t) = 1. This is again

implied by (35) and the reasoning used to derive Proposition 2. The outcome

again is remorselessly pessimistic for labour.

As a final observation note that, even in this representative agent setting, it is

possible to see that the outcome for the owners of capital is remorselessly optimistic

– in contrast to that outcome for labour. As ī(t) rises steadily during transition,

the capital share (combining both the s-capital and c-capital shares), which (8)

implies is equal to 1 − ψ(1 − ī), steadily rises. In turn, (10) and (24) imply that

the return to the fixed stock of c-capital, rC(t), is equal to:

(36) rC(t) =
ˆ̂
KS(t)ψ · aS(0, t)

ψ
1−ψ · a

C(0)1−ψ · (1− ψ)

(KC)ψ

implying that rC(t) rises in transition and steady-state when ī(t) = 1.

3. Extension

3.1. The Creation of New Tasks?

In the model in this paper, the task-continuum has a fixed upper-bound equal to

one.28 Yet in practice it may be that the task-continuum changes over time. As

28This is the particular assumption that leads Autor and Salomons (2017a,b) to observe that
labour has “no place left to hide” in the model.
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noted before, this possibility is captured in Acemoglu and Restrepo (2018a,b). A

novel feature of their model is that the task-continuum is not fixed: new tasks are

endogenously created in the direction of labour’s comparative advantage. More

specifically, as labour is displaced by capital, wages fall and the cost of produc-

ing output with labour also falls: this creates an incentive for firms to create

entirely new tasks for the now-cheaper labour to do. And so, given this process,

displaced workers are then able to perform those new tasks, offsetting the process

of immiseration that I have identified in this paper.

However, as Acemoglu and Restrepo (2018a) also note, it is not inevitable that

sufficient new tasks are created for labour to do. The authors explicitly identify

a possible case where insufficient new tasks are created for labour – what they

call the “horse equilibrium” (where human beings, like horses before them, are

immiserated by technological progress) – but do not elaborate in detail on what

the dynamics in this case would look like. The case arises in their framework when

the long-run rental rate of capital is sufficiently low relative to the wage: in short,

when there is little incentive for firms to create new tasks for labour to do, because

capital is sufficiently cheap relative to labour. But given the assumptions made

in Acemoglu and Restrepo (2018a), there are also further theoretical reasons to

imagine that this case might occur, alongside those identified explicitly identified

by the authors.

One restrictive assumption that is made in their model, for instance, is the

claim that the production of new tasks for labour to do is linear in the alloca-

tion of resources to that process: but it seems intuitive to imagine that it may

get harder over time to create new tasks for labour to do, and that production

function should be characterised by diminishing marginal returns.29 Another re-

strictive assumption is the claim that any new tasks are necessarily created in

the direction of labour’s comparative advantage: but, again, it seems intuitive to

imagine that capital could become so productive relative to labour over time that

firms instead instead face an incentive to create new tasks for capital to do. Both

these possibilities – that it might get harder to find new things for labour to do

over time, and that firms might instead face an incentive to create new tasks for

capital to do – would make it less likely that sufficient tasks are create for dis-

placed workers to do, and more likely that labour is immiserated by technological

progress in their framework and the ‘horse equilibrium’ is achieved.

29This is equation (22) – the creation of new tasks, Ṅ(t), is linear in the allocation of scientists
to the creation of new tasks, SN (t), with coefficient κN . It seems intuitive to think that a more
reasonable production function might be Ṅ(t) = κNSN (t)α, where 0 < α < 1.
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In turn, alongside these theoretical arguments for believing that insufficient

tasks might be created for displaced workers to do, is empirical evidence that sug-

gests, in practice, the process of new task creation may be slowing down. Acemoglu

and Restrepo (2019a), for instance, argue that over the last three decades there

has been a “striking” slowdown in the growth of labour demand: the per capita

wage bill in the US grew only 1.33 percent per year on average from 1987-2017,

though stagnated altogether since 2000. Their conclusion is that this deceleration

in labour demand growth is, in part, due to “rapid automation that is not being

counterbalanced by the creation of new tasks”.

Together, then, these theoretical arguments and empirical observations show

why it is important to understand in greater detail what happens in a setting

where insufficient new tasks are created for labour to do, and to explore what other

countervailing forces might offset the immiseration of labour in such a scenario.

And the new model in this paper, with a fixed task-continuum, provides a tractable

setting to explore that case. In turn, the new distinction between s-capital and

c-capital shows that the behaviour of c-capital is critical in this setting: if no new

tasks are created, then c-capital might provide an alternative countervailing force

to offset the immiseration of labour.

3.2. The Role of C-Capital

In the model set out before, technological progress only takes place in s-capital,

and only s-capital is accumulated. A reasonable extension is consider the case

where there is technological progress also takes place in c-capital, and both types

of capital are accumulated. However, in this more general case, it is no longer

possible to identify a dynamic equilibrium with a steady state in which the rate

of return on capital is constant. The reason is as follows. In a setting where both

types of capital are accumulated, the following arbitrage condition must hold:

(37) rS(t) = rC(t) = r(t) ∀t

implying that the return on each type of capital is the same. The final relative

factor price derived in (10) implies that if the return on each type of capital is the

same, as in (37), then the following condition must hold:

(38) gK
S

(t)− gKC

(t) = gī(t)
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which implies that the difference in the growth rate in the accumulation of each

type of capital, gK
S
(t) and gK

C
(t), must be equal to the growth rate in the cut-off,

gī(t). But if the return on s-capital, rS(t), is to remain constant in any steady-

state, then the expression for rS(t) in (24) implies that the following condition

must also hold:

(39) gK
S

(t)− gKC

(t) = gī(t) +
ψ

1− ψ
· gS + gC

where gS and gC are the growth rates in the productivity of s-capital and c-

capital respectively. (39) and (38) are clearly incompatible – they require different

differences between the growth rate in s-capital and c-capital. And so, is not

possible to find a dynamic equilibrium where the arbitrage condition holds and

the rate of return on capital is constant at the same time. Given the arbitrage

condition must hold, this implies that, over time, the rate of return on capital must

rise continually in a dynamic version of the new model where there is technological

progress in both types of capital, and both types are also accumulated. In effect,

this version of the model converges to an ‘AK’ model, where the K is composed

of both KS and KC (a similar result is found in Peretto and Saeter 2013).

However, despite the absence of a dynamic equilibrium in the case where c-

capital is also endogenously accumulated, is still possible to perform comparative

statics with c-capital at any moment during transition in the original dynamic

equilibrium, where only s-capital is endogenously accumulated. To do this, note

that an explicit expression for w(t) can be identified from (10) and (36):

(40) w(t) = (aC(0, t) ·KC(t))1−ψ ·
ˆ̂
KS(t)ψ · aS(0, t)

ψ
1−ψ · ψ · (1− ī(t))
L

From (40), Proposition 3 follows.

PROPOSITION 3: In any period t, the wage is an increasing function of both

the level and productivity of c-capital:

∂w(t)

∂aC(0, t)
> 0,

∂w(t)

∂KC(t)
> 0

This result is new and matters because it suggests that, in the absence of a pro-

cess that creates new tasks for displaced workers to do, c-capital can act as an

alternative countervailing force to the immiseration of labour, either by becoming
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more productive or more abundant.

3.3. The ’Right’ Kind of AI

In Acemoglu and Restrepo (2019b), the authors distinguish between two different

kinds of artificial intelligence (AI): the “right” kind of AI, which are systems and

machines that create new tasks for workers to do; and the “wrong” type, which are

those that displace workers without creating new tasks for them to do. The new

model in this paper builds on this distinction, and shows that in a setting where

the process of task creation is ineffective or absent, then the “right” v. “wrong”

distinction takes on an alternative meaning – the “right” kind of AI are systems

and machines that with c-capital properties, and the “wrong” kind of AI are those

with s-capital properties.

From a policy standpoint, Acemoglu and Restrepo (2018a, b, 2019b) demon-

strate the importance of understanding the dynamics of new task creation – and

what sort of interventions might support that process. The lesson from this paper,

though, is that is also very important to understand the nature of the technolo-

gies themselves – and what interventions might encourage the use of those with

c-capital rather than s-capital properties. And this insight is particularly relevant

for two reasons. First, as before, there are theoretical arguments and empirical

observations that show it is not at all inevitable that sufficient new tasks will be

created for labour to do – and so it is important to explore other countervail-

ing forces against the immiseration of the labour. But secondly, there is also a

growing body of evidence suggesting that recent technological change may indeed

have shifted towards s-capital and away from c-capital. For instance, Autor and

Salomons (2018) conclude that “automation... [has] become in recent decades less

labour-augmenting and more labour-displacing” – this alternative countervailing

force also appears to be weakening.

3.4. Conclusion

Autor (2014) captured the traditional case for optimism in the early task-based

literature with the observation that “tasks that cannot be substituted by com-

puterization are generally complemented by it”; and Autor (2015) restated it,

explaining how “tasks that cannot be substituted by automation are generally

complemented by it”. The analysis in this paper fit with these early claims: those

tasks that cannot be automated are complemented by c-capital, and the value of

those tasks increases as the quantity or productivity of c-capital increases. How-

28



ever, the new model does challenge the assumption that labour will indefinitely

be best placed to perform those complemented tasks. This is the new role for

s-capital; any increase in its quantity or productivity erodes the set of types of

q-complemented tasks in which labour retains the comparative advantage, and

real wages fall. This is the process of task encroachment, where labour is forced

to specialise in a diminishing set of tasks. In Acemoglu and Restrepo (2018a, b),

the creation of new tasks acts as a countervailing force against this immiseration

of labour. In this paper, by using a new distinction between two different types

of capital, I identify an alternative countervailing force – increases in the quantity

or productivity of c-capital.

This paper is an additional step towards a more general understanding of

the full set of countervailing forces that might offset the immiseration of labour

if systems and machines continue to become more capable over time. And the

framework set out provides various routes for further exploration. First, the pro-

cess of task encroachment explored is very simple, where s-capital gradually takes

on more ‘complex’ tasks, and the only possible variation is in the speed of this

process (determined by the magnitude of g in 12). However, in practice it is un-

likely that encroachment takes place in such a deterministic way, and exploring the

different forms that this process of task encroachment could take is an interesting

task. Secondly, the model relies on the assumption that there is no growth in the

productivity of labour. But growth in the productivity of labour might also act as

a countervailing force against the immiseration of labour, by both allowing labour

to retain the comparative advantage in a broader set of tasks, and by raising the

demand fo labour to perform those tasks.30

A further step is the exploration of other forms for the factor-based production

function for tasks in (3) and the task-based production function for goods in (2).

For instance, the model relies on the assumption that (2) is Cobb-Douglas, so

expenditure shares on the two different types of tasks, z1(i) and z2(i), remain

fixed – but it is possible in practice that the production function takes a different

form. Take, for instance, a production function where expenditure shares on the

two different types of tasks do change in response to changes in the relative price

of those tasks. And suppose relative price changes cause expenditure shares to

increase on tasks performed by labour. This would help to offset the process of

30The static model in Section 1 shows that an increase in productivity of labour across the

task-continuum causes a fall in ī, and an increase in w(t) in (37) – both by increasing
ˆ̂
KS(t)

(recall that ī enters the denominator of the expression for ‘effective’ c-capital in (21)) and by
increasing the 1− ī(t) term.
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immiseration – labour may be confined to a shrinking range of types of tasks, but

there would also be a greater relative demand for those residual tasks. In the

opposite case, where relative price changes caused expenditure shares to decrease

on tasks performed by labour, this would compound the process of immiseration.

These observations suggest that further work is needed to understand the different

ways in which the latest technologies combine with labour in production.

A final step concerns the demand-side. An emerging set of arguments for

remaining optimistic about the threat of automation appeal to consumer tastes

and preferences. The first is a claim that demand for goods will rise and displaced

workers can be employed to meet that increase in demand for goods. For instance,

Autor (2015) notes “I think that people are extremely unduly pessimistic ... as

people get wealthier, they tend to consume more, so that also creates demand”,

Summers (2013), that “[t]he stupid people thought that automation was going

to make all the jobs go away ... the smart people understood that when more

was produced, there would be more income and therefore there would be more

demand”, and Kenneth Arrow, that “the economy does find other jobs for workers.

When wealth is created, people spend their money on something” (Harden 1982).

The second form of the argument is a claim that demand for goods will change

and displaced works can be employed to meet that change in demand across goods.

For instance, Mokyr et al. (2015) “[t]he future will surely bring new products that

are currently barely imagined, but will be viewed as necessities by the citizens of

2050 or 2080” and Autor and Dorn (2013b), that the economy will “generate new

products and services that raise national income and increase overall demand for

labour in the economy”.

These arguments are appealing and intuitive. But at present, the most widely

used models that explore the effect of technological change on the labour market

cannot capture them. The problem is that these models tend to only have a

unique final good and so no role for tastes and preferences (see, for instance:

Autor, Levy and Murnane 2003; Acemolgu and Autor 2011; and Acemoglu and

Restrepo 2018a, b).31 However, the new model in this paper does provide a clear

way to explore these arguments in a formal way. Because preferences are Cobb-

Douglas in (1), expenditure shares across goods do not change, either due to

income or price effects. Yet with more complex preferences, it is possible to show

that expenditure shares can change over time in this model. In turn, it is also

31The notable exception to this is Autor and Dorn (2013a), which does have a role for the
demand-side. However, it is a limited one; the model only has two goods. Bessen (2018) makes
a similar observation to this one.
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possible to show that if consumer expenditure shifts towards goods that require

types of tasks in which labour retains a comparative advantage, then this can also

act to countervail immiseraiton as well (see, for instance, Susskind 2018).

Each of these steps, then, is a possible direction for further research.

4. Appendix (For Online Publication)

4.1. Deriving the Hamiltonian

To find this steady-state, I used a Hamiltonian. But this is an unconventional

Hamiltonian – there is one state variable, KS(t), one co-state variable, µ(t), and

a range of choice variables, x(i, t). To show that the traditional Hamiltonian

approach applies in this setting, I can derive the Hamiltonian and accompanying

first order conditions explicitly. The aim is to maximise:

(41)∫ ∞
0

e−ρt
[∫ 1

0

θ(i) lnx(i, t) di+ µ(t)

[
Y (t)−

∫ 1

0

x(i, t) · p(i, t) di− K̇S(t)

]]
dt

where Y (t) is defined as before. Integrating by parts implies:

(42)∫ ∞
0

e−ρt · µ(t) · K̇S(t)dt =
[
e−ρt · µ(t) ·KS(t)

]t=T
t=0
−
∫ ∞

0

KS(t)
∂ [µ(t) · e−ρt]

∂t
dt

= e−ρT · µ(T ) ·KS(T )− µ(0) ·KS(0)−
∫ ∞

0

KS(t) · e−ρt [µ̇(t)− ρ · µ(t)] dt

and since:

(43) A = e−ρT · µ(T ) ·KS(T )− µ(0) ·KS(0)

where A is a constant, it follows that (41) can be re-written:

(44)∫ ∞
0

e−ρt
[∫ 1

0

θ(i) lnx(i, t) di+ µ(t)

[
Y (t)−

∫ 1

0

x(i, t) · p(i, t) di
]

+KS(t) · [µ̇(t)− ρ · µ(t)]

]
dt

−A

It follows that to maximise (44) over time the following expression must be max-
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imised for each given t:

(45)∫ 1

0

θ(i) lnx(i, t) di+ µ(t)

[
Y (t)−

∫ 1

0

x(i, t) · p(i, t) di
]

+KS(t) · [µ̇(t)− ρ · µ(t)]

or more concisely the following must be maximised in each period t:

(46) H +KS(t) · [µ̇(t)− ρ · µ(t)]

where H is the current value Hamiltonian. And so, in the traditional way, to

maximise the expressions in (45) and (46) a traditional set of first order conditions

follow:

(47)

∂H

∂x(i, t)
= 0 ∀i

∂H

∂KS(t)
+ µ̇(t)− ρ · µ(t) = 0

These are the first order conditions that I use in this paper. This derivation is

based on Wren-Lewis (2012).

4.2. Assumption 3

To derive the condition stated in Assumption 3, take two arbitrary levels of i such

that ĩ < ˜̃i. Suppose Assumption 2 initially holds so that at t = 0:

(48) A(̃i, 0) ≤ A(̃̃i, 0)

Given the definition of A(i, t) in (4) this implies:

(49) aS (̃̃i, 0) ≤ aS (̃i, 0) · a
L (̃̃i, 0)

aL(̃i, 0)

For Assumption 2 to continue hold over time, which is the condition stated in

Assumption 3, it must be that ∀t:

(50) aS (̃̃i, t) ≤ aS (̃i, t) · a
L (̃̃i, t)

aL(̃i, t)
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To see that the growth process in (12) maintains this condition, first note that

(12) implies:

(51) aS(i, t) = aS(i, 0) · egt

Also note that (49) and (51) imply:

(52)

aS (̃̃i, 0) · egt ≤ aS (̃i, 0) · egt · a
L (̃̃i, 0)

aL(̃i, 0)

aS (̃̃i, t) ≤ aS (̃i, t) · a
L (̃̃i, 0)

aL(̃i, 0)

and so it follows that given (52) holds, then Assumption 3, captured by the con-

dition in (50), also holds, since the productivities of labour do not change over

time.

4.3. Law of Motion for x(i, t)

From (15) it follows that:

(53) x(i, t) =
1

µ(t) · p(i, t)

And from (16) that:

(54)
µ̇(t)

µ(t)
= −rS(t) + ρ

It follows from (53) that:

(55)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
− µ̇(t)

µ(t)

(54) and (55) therefore imply that:

(56)
ẋ(i, t)

x(i, t)
= − ṗ(i, t)

p(i, t)
+ rS(t)− ρ
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4.4. Derivation of rS(t) and Ŷ (t) in terms of
ˆ̂
KS(t)

Expression for p(i, t): The first step in deriving rS(t) and Ŷ (t) in terms of
ˆ̂
KS(t)

is to find an expression for p(i, t). Suppose that i(t) ∈ [0, ī(t)]. This implies that

x(i, t) is produced by s-capital and c-capital:

(57) x(i, t) =
[
aS(i, t)KS(i, t)

]ψ [
aC(i, t)KC(i, t)

]1−ψ ∀i(t) ∈ [0, ĩ(t)]

This implies that the marginal product of s-capital in producing x(0, t) is:

(58)

MPKS(i, t) = aS(i, t) · ψ
[
aS(i, t)KS(i, t)

]ψ−1 [
aC(i, t)KC(i, t)

]1−ψ
= ψ · x(i, t)

KS(i, t)

and the marginal product of c-capital in producing x(i, t) is:

(59)

MPKC(i, t) = aC(i, t) · (1− ψ) ·
[
aL(i, t)LL(i, t)

]ψ [
aC(i, t)KC(i, t)

]−ψ
= (1− ψ) · x(i, t)

KC(i, t)

Given perfectly competitive profit-maximising firms, the price of each of these

factors – rS(t) and rC(t) – must be equal to their respective marginal revenue

products:

(60)

rS(t) = p(i, t) · ψ · x(i, t)

KS(i, t)
∀i(t) ∈ [0, ī(t)]

rC(t) = p(i, t) · (1− ψ) · x(i, t)

KC(i, t)
∀i(t) ∈ [0, 1]

These can be re-arranged:

(61)

KS(i, t) = p(i, t) · ψ · x(i, t)

rS(t)
∀i(t) ∈ [0, ī(t)]

KC(i, t) = p(i, t) · (1− ψ) · x(i, t)

rC(t)
∀i(t) ∈ [0, 1]
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and substituting these expressions for KS(i, t) and KC(i, t) into (57) implies:

(62)

x(i, t) =

[
aS(i, t) · p(i, t) · ψ · x(i, t)

rS

]ψ [
aC(i, t) · p(i, t) · (1− ψ) · x(i, t)

rC(t)

]1−ψ

p(i) =

[
rS

ψ · aS(i)

]ψ [
rC

(1− ψ) · aC(i)

]1−ψ

(62) is therefore the p(i, t) for any good i(t) ∈ [0, ī(t)]. A similar exercise to derive

L(i, t) provides p(i, t) for those remaining goods i(t) ∈ [̄i(t), 1] produced by labour

with c-capital.

Expression for rS(t) in terms of
ˆ̂
KS(t): To now find rS(t) in terms of

ˆ̂
KS(t), first

note that (62) implies that p(0, t), the price of the numeraire good, is equal to:

(63) p(0, t) =

[
rS(t)

ψ · aS(0, t)

]ψ [
rC(t)

(1− ψ) · aC(0, t)

]1−ψ

Substituting the expression for rC(t) in terms of rS(t) that follows from (10),

and using the price normalisation that p(0, t) = 1, (63) implies that rS(t) can be

re-written as:

(64)
rS(t) =

[
aS(0, t)

]ψ [
aC(0)

]1−ψ · [̄i(t)]1−ψ · [ 1

KS(t)

]1−ψ

·KC(1−ψ) · ψ

=
ˆ̂
KS(t)ψ−1 ·D

where D is a positive constant equal to
(
aC(0) ·KC

)1−ψ · ψ.

Expression for Ŷ (t) in terms of
ˆ̂
KS(t) – Now consider Ŷ (t) in terms of

ˆ̂
KS(t).

Note that the structure of production in (2) and (3) implies that total s-capital

income is equal to:

(65) rS(t) ·KS(t) = ī(t) · ψ · Y (t)

and so substituting in rS(t) from (64) it follows that:
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(66)

Ŷ (t) =
ˆ̂
KS(t)ψ−1 ·D · K̂S(t) · 1

ī(t)
· 1

ψ

=
ˆ̂
KS(t)ψ · D

ψ

4.5. Law of Motion for
ˆ̂
KS(i, t)

Using (25) and (26), (23) can be written as:

(67)

˙̂
K̂S(t)

ˆ̂
KS(t)

=

ˆ̂
KS(t)ψ · D

ψ
− ĉ(t)

K̂S(t)
−

[
∂ī(t)

∂
ˆ̂
KS(t)

·
˙̂
K̂S(t) · 1

ī(t)
+

ψ

1− ψ
· g

]

And so:

(68)

˙̂
K̂S(t) =

1

ī(t)
·
[

ˆ̂
KS(t)ψ · D

ψ
− ĉ(t)

]
−

[
∂ī(t)

∂
ˆ̂
KS(t)

·
˙̂
K̂S(t) · 1

ī(t)
+

ψ

1− ψ
· g

]
· ˆ̂
KS(t)

=

ˆ̂
KS(t)ψ · D

ψ
− ī(t) · ψ

1−ψ · g ·
ˆ̂
KS(t)− ĉ(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KS(t)

· ˆ̂
KS(t)

It follows that:

(69)

˙̂
K̂S(t)

ˆ̂
KS(t)

=

ˆ̂
KS(t)ψ−1 · D

ψ
− ī(t) · ψ

1−ψ · g −
ĉ(t)

ˆ̂
KS(t)

ī(t) + ∂ī(t)

∂
ˆ̂
KS(t)

· ˆ̂
KS(t)

4.6. Transition Path

To show that ī(t) increases as
ˆ̂
KS(t) increases on the transition path, I first derive

the following relationship between the growth rates in ī(t), KS(t) and g:

(70) gī(t) = φ(t)
[
gK

S

(t) + g
]

36



where:

(71) φ(t) =
1− ī(t)

[̄i(t)− ī(t)2] · y(t) + 1
and y(t) =

[
aH1 (̄i(t), t)

aL(̄i(t), t)
− aS1 (̄i(t), t)

aS (̄i(t), t)

]

and φ(t) has the three properties: φ(t) ≥ 0; φ(t) ≤ 1; and limī(t)→1 φ(t) = 0. The

expression in (70) implies that the growth rate in the equilibrium cut-off ī(t), gī(t),

is proportional to the sum of the growth rate in the s-capital stock gK
S
(t) and the

productivity of KS(t), ψ
1−ψ · g where the constant of proportionality φ(t) is time

dependent with the three features set out above. I now derive this expression for

gī(t) and these three properties of φ(t).

Deriving gī(t): To derive the expression for gī(t), note that the equilibrium con-

dition, A(̄i(t), t) = B(̄i(t), t) can be re-arranged as:

(72) aL(̄i(t), t) · ī(t) = [1− ī(t)] · aS (̄i(t), t) · K
S(t)

L

Taking time derivatives of (72) implies a further condition that must hold ∀t:
(73)

˙̄i(t)·a
H
1 (̄i(t), t)

aL(̄i(t), t)
+
aH2 (̄i(t), t)

aL(̄i(t), t)
+

˙̄i(t)

ī(t)
= −

˙̄i(t)

[1− ī(t)]
+˙̄i(t)·a

S
1 (̄i(t), t)

aS (̄i(t), t)
+
aS2 (̄i(t), t)

aS (̄i(t), t)
+
K̇S(t)

KS(t)

and substituting in the relevant expressions for the growth rates – gK
S
(t) the

growth rate in the stock of s-capital, gī(t) the growth rate in the equilibrium

cut-off ī(t), and g the growth rate in the productivity of s-capital – implies that:

(74) gī(t)

[
ī(t) ·

[
aH1 (̄i(t), t)

aL(̄i(t), t)
− aS1 (̄i(t), t)

aS (̄i(t), t)

]
+

1

[1− ī(t)]

]
= g + gK

S

(t)

and so:

(75) gī(t) = φ(t)
[
gK

S

(t) + g
]

where:

(76)

φ(t) =

[
ī(t) ·

[
aH1 (̄i(t), t)

aL(̄i(t), t)
− aS1 (̄i(t), t)

aS (̄i(t), t)

]
+

1

[1− ī(t)]

]−1

=
1− ī(t)

[̄i(t)− ī(t)2] · y(t) + 1
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Deriving the Three Properties of φ(t): First to see that φ(t) ≥ 0 note that the

weakly positive slope of A(i, t) implies ∀i, t:32

(77) A1(i, t) ≥ 0

which, given the definition of A(i, t), can be re-written as:

(78)
aH1 (i, t) · aS(i, t)− aS1 (i, t) · aL(i, t)

[aS(i, t)]2
≥ 0

Since the denominator of the expression in (78) is always positive, this implies

that the following must hold:

(79)

aH1 (i, t) · aS(i, t) ≥ aS1 (i, t) · aL(i, t)

aH1 (i, t)

aL(i, t)
≥ aS1 (i, t)

aS(i, t)

Therefore so long as the A(i, t) schedule is weakly positively sloped, y(t) remains

weakly positive, the denominator in the expression for φ(t) in (76) remains positive,

and so φ(t) also remains weakly positive. To see the second property, that φ(t) ≤ 1,

consider the following proof by contradiction. Assume instead that φ(t) > 1. The

expression for φ(t) in (76) then implies:

(80)

ī(t) ·
[
aH1 (̄i(t), t)

aL(̄i(t), t)
− aS1 (̄i(t), t)

aS (̄i(t), t)

]
+

1

[1− ī(t)]
< 1

ī(t) · [1− ī(t)] · y(t) < 1− ī(t)− 1

ī(t) · y(t)− ī(t)2 · y(t) < −ī(t)

But since ī(t) ∈ [0, 1] this condition cannot hold. If ī(t) = 0, then the result is

a contradiction since (80) requires that 0 < 0. Similarly if ī(t) > 0 then (80)

requires:

(81) y(t) < − 1

1− ī(t)
< 0

which is not possible since ī(t) ∈ [0, 1] and y(t) ≥ 0. The third property, that

limī(t)→1 φ(t) = 0, follows from the fact that:

32This is Assumptions 2 and 3.
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(82) lim
ī(t)→1

[
1

1− ī(t)

]
=∞

and that:

(83) lim
ī(t)→1

[
ī(t) ·

[
aH1 (̄i(t), t)

aL(̄i(t), t)
− aS1 (̄i(t), t)

aS (̄i(t), t)

]]
≥ 0

And so limī(t)→1 φ(t) = 0, given (76), (82) and (83).

ī During Transition: The proof that d̄i(t)

d
ˆ̂
KS(t)

≥ 0 during the conjectured transition

in Figure 5 now follows from two relationships. The first is implied by the fact

that if
ˆ̂
KS(t) is increasing, the definition in (21) then implies:

(84) gK
S

(t) > gī(t) +
ψ

1− ψ
· g

where gK
S
(t) is again the growth rate in the stock of s-capital and gī(t) the growth

rate in the equilibrium cut-off ī(t). The second relationship is that set out in (70).

Combining these two sets of relationships implies that if
ˆ̂
KS(t) is increasing then:

(85)
1− φ(t)

φ(t)
· gī(t) > 1

1− ψ
· g

And so:

(86) gī(t) >
φ(t)

(1− ψ) · (1− φ(t))
· g

Given the properties of φ(t) derived before, and that g > 0, this implies that if
ˆ̂
KS(t) is increasing then:

(87) gī(t) > 0

i.e. ī(t) is also increasing.
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